
Suggested solution of HW2

Chapter 3 Q12: By Residue formula, for any N ≥ |u|

1

2πi

˛
|z|=N+1/2

π cotπz

(u+ z)2
dz =

∑
|n|≤N+1/2

Res

(
π cotπz

(u+ z)2
, n

)
+Res

(
π cotπz

(u+ z)2
,−u

)
.

At z = n,

d

dz
sinπz

∣∣∣∣
n

= π(−1)n.

Thus,

Res

(
π cotπz

(u+ z)2
, n

)
=

1

(u+ n)2
.

Also, direct checking yield

Res

(
π cotπz

(u+ z)2
,−u

)
= − π2

sin2 πu
.

On the other hand, on the circle |z| = N + 1/2, write πz = x+ iy, fix a small δ > 0.

If |x| > δ, we have

| cotπz|2 =
cos2 x+ sinh2 y

sin2 x+ sinh2 y
≤ 1 + sinh2 y

C + sinh2 y
< C1.

If |x| ≤ δ,

| cotπz|2 =
cos2 x+ sinh2 y

sin2 x+ sinh2 y
≤ 1 + sinh2 y

sinh2 y
< 2.

Thus,

1

2πi

˛
|z|=N+1/2

π cotπz

(u+ z)2
dz → 0 as N →∞

which yield the desired result.

Chapter 4 Q1: (a) if ξ ∈ R,

A(ξ)−B(ξ) = e2πit
ˆ
R
f(x)e−2πiξxdx = 0.

(b) We first claim that A(z) is differentiable at z0 ∈ H. For z = x+ iy, y > 0,

A(z) =

ˆ t

−∞
f(ξ)e−2πi(x+iy)(ξ−t)dξ =

ˆ ∞
0

f(ξ)e2πi(x+iy)ξdξ

=

ˆ +∞

0

f(ξ)e2πixe−2πyξdξ.

Since f is of moderate decrease, and y > 0, A(z) define a holomorphic function

on H. And

|A(z)| ≤
ˆ +∞

0

|f(ξ)|e−2πyξdξ ≤
ˆ +∞

0

A

1 + ξ2
e−2πyξdξ ≤ A

2πy
→ 0 as y →∞.
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Thus, A(z) is a bounded holomorphic function. Similar for B(z). By Morera’s

Theorem, F (z) is a bounded entire function, and thus is constant. By above

inequality, F (z) ≡ 0.

(c) Putting z = 0, we have for each t ∈ R

ˆ t

−∞
f(x) dx = 0.

By continuity, f ≡ 0.

Chapter 4 Q2: If f is analytic in Sa, obviously f (n) is analytic in Sb for any 0 ≤ b < a. It remains to

show that there exists Bn > 0 such that

|f (n)(x+ iy)| ≤ Bn
1 + x2

for all x ∈ R and |y| < b.

Let δ = a− b, w ∈ Sb. By Cauchy formula,∣∣∣∣f (n)(w)

n!

∣∣∣∣ =
1

2π

∣∣∣∣∣
˛
B(w,δ)

f(z)

(z − w)n+1
dz

∣∣∣∣∣
≤ 1

2π

ˆ 2π

0

|f(w + δeiθ)|
δn

dθ

≤ 1

2πδn

ˆ 2π

0

A

1 + [Re(w + δeiθ)]2
dθ

If |Re(w)| > 2δ,∣∣∣∣f (n)(w)

n!

∣∣∣∣ ≤ A

δn
· 1

1− δ2 + [Re(w)]2/2
≤ A

δn
1

1 + (Re(w))2/4
≤ 4A

δn
1

1 + (Re(w))2
.

If |Re(w)| ≤ 2δ, ∣∣∣∣f (n)(w)

n!

∣∣∣∣ ≤ A

δn
· 1 + 4δ2

1 + (Re(w))2

Choose Bn =
An!(1 + 4δ2)

δn
.

Chapter 4 Q3: If ξ < 0, let γ be the curve composed of the upper semi circle of radius R from R to

−R and the straight line from −R to R on the real axis. For R sufficiently large, by

Residue formula, one can obtain

1

2πi

˛
γ

a

a2 + z2
e−2πizξ dz =

1

2i
e2πξa.

On the other hand,

˛
γ

f(z) dz =

ˆ R

−R

a

a2 + x2
e−2πixξ dx+

ˆ π

0

a

a2 +R2e2iθ
e−2πiRξ(cos θ+i sin θ) dθ
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And∣∣∣∣ˆ π

0

a

a2 +R2e2iθ
e−2πiRξ(cos θ+i sin θ) dθ

∣∣∣∣ ≤ ˆ π

0

a

R2 − a2
e2πRξ sin θ dθ → 0 as R→∞.

Result follows when we take R tends to +∞. If ξ ≥ 0, instead we consider the curve

composed of lower semi cirle from −R to R and the straight line from R to −R. And

then argue as same as before.

The inversion can be checked by direct integration.

ˆ +∞

0

e−2πa|ξ|e2πiξxdξ =
1

2π(a− ix)
and

ˆ 0

−∞
e−2πa|ξ|e2πiξxdξ =

1

2π(a+ ix)

Summing up yield the result.

Chapter 4 Q6: Follows from applying Poisson summation formula to f =
a

a2 + x2
and the result in

Q3.

∞∑
n=−∞

e−2πa|n| =

∞∑
n=1

e−2πan +

0∑
n=−∞

e2πan = 1 + 2

∞∑
n=1

e−2πan

=
1 + e−2πa

1− e−2πa
= cothπa.

Chapter 4 Q7: (a) If ξ ≤ 0, using contour integral as in the first part of Q3, as the pole is in the

lower half plane, we get

0 =

˛
γ

f(z)e−2πizξ dz =

ˆ R

−R

1

(x+ τ)k
e−2πixξ dx+

ˆ π

0

1

(τ +Reiθ)k
e−2πiξR(cos θ+i sin θ) dθ.

while

ˆ π

0

∣∣∣∣ 1

(τ +Reiθ)k
e−2πiξR(cos θ+i sin θ)

∣∣∣∣ dθ ≤ ˆ π

0

1

(R− |τ |)k
e2πiξ sin θ dθ → 0.

Thus, f̂(ξ) = 0 if ξ ≤ 0.

If ξ > 0, using the contour as in the latter part of Q3. we have

1

2πi

˛
γ

1

(z + τ)k
e−2πizξ dz = Res−τ (f(z)e−2πizξ).

At z = −τ ,

dk−1

dzk−1
e−2πizξ

∣∣∣∣
−τ

= (−2πiξ)k−1e2πiτξ.

Thus,

Res−τ (f(z)e−2πizξ) =
(−2πiξ)k−1e2πiτξ

(k − 1)!

in which ˛
γ

1

(z + τ)k
e−2πizξ dz = − (−2πi)kξk−1e2πiτξ

(k − 1)!
.
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But ˛
γ

1

(z + τ)k
e−2πizξ dz =

ˆ −R
R

1

(x+ τ)k
e−2πixξ dx+O(

1

Rk
).

Takeing R→∞ yields

f̂(ξ) =
(−2πi)k

(k − 1)!
ξk−1e2πiξτ .

Then we apply Poisson summation formula to get the desired equality.

(b) Putting k = 2, then

∞∑
n=−∞

1

(τ + n)2
= −4π2

∞∑
m=1

me2πimτ

Using the equality
∞∑
m=1

mzm =
z

(1− z)2
for |z| < 1.

Since Im(τ) > 0, we can substitute z = e2πiτ into the above equation. Thus,

−4π2
∞∑
m=1

me2πimτ = −4π2 e2πiτ

(1− e2πiτ )2
=

π2

sin2(πτ)
.

(c) Yes. Since both
π2

sin2(πz)
and

∞∑
n=−∞

1

(z + n)2
define a meromorphic function on

C with pole at integers, and equal in value on the upper half plane. By identity

theorem, they are equal.

For sake of completeness, I prove the identity theorem for meromorphic function

here. It suffices to prove that they are equal on any compact set Ω ⊂ C. If f and

g are two meromorphic functions on Ω such that f(z) = g(z) on a nonempty open

region U . As poles are isolated, there exists holomorphic function f1, f2, g1, g2

on interior of Ω such that

f(z) =
f1
f2
, g(z) =

g1
g2

on int(Ω).

Define h = f1g2− f2g1 which is holomorphic on int(Ω). h = 0 on U . By identity

theorem, h = 0 on Ω. Thus, f ≡ g on Ω.

Chapter 5 Q2: (a) Let p(z) be a polynomial of degree m. There exists a constant C > 0 such that

|p(z)| ≤ C(|z|m + 1)

∀ε > 0, there exists Aε > 0 such that

|z|m ≤ Aεexp(|z|ε)

Thus, p(z) is of order less than or equal to ε, for any ε > 0. So, it is of order 0.
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(b) If z = |z|eiθ, b = |b|eiφ,

|ebz
n

| = e|z|
n|b| cos(nθ+φ) ≤ e|z|

n|b|

So it is of order less than or equal to n. Put z = x ∈ R to see that the order is

exactly n.

(c) Put z = x ∈ R. Since for any s ∈ R, there exists R > 0 s.t. ex > xs for all x > R.

The function ee
z

has infinity order of growth.

Chapter 5 Q3: ∣∣∣∣∣∑
n∈N

eiπn
2τe2πinz

∣∣∣∣∣ ≤∑
n∈N

e−πn·Im(nτ+2z)

≤
∑
n∈N

e−πn
2·Im(τ) · e2π|n||z|

≤ e2π|z|
2 ∑
n∈N

e−πn
2·Im(τ)/2 (using AM-GM inequality)

≤ Ce2π|z|
2

for some constant C depends on τ only. Thus it is of order ≤ 2. It remains to show

that the order is exactly 2. For each r and m ∈ N, we have

Θ(r +mτ |τ) = e−iπm
2r−2imπrΘ(r|τ).

Thus,

|Θ(r +mτ |τ)| = etπm
2

|Θ(r|τ)|.

Choose r such that Right hand side is non-zero. Thus the growth of order is at least

2.

Chapter 5 Q6: Using the product formula for the sine function. Putting z = 1/2, we get

2

π
=

∞∏
n=1

(1− 1

4n2
) =

∞∏
n=1

(2n+ 1)(2n− 1)

(2n)2
.

Chapter 5 Q7: (a) Clearly, an 6= −1 for all n ∈ N, otherwise the conclusion fail. Since |an| → 0, we

may assume |an| ≤ 1/2 for all n ∈ N. Hence, log(1 + an) is well defined if we

choose the principle branch. By the power series expansion of log, we know that

for all |z| ≤ 1/2,

|log(1 + z)− z| ≤ C|z|2.

Therefore, for any m ≥ n ≥ 1,∣∣∣∣∣
m∑
k=n

log(1 + ak)−
m∑
k=n

ak

∣∣∣∣∣ ≤ C
m∑
k=n

|ak|2

The conclusion follows immediately from cauchy criterion.

(b) Take an = einπ/4 will suffices.
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(c) Take a sequence an which contains a constant subsequence ank
= −1.

Chapter 5 Q8: The product converge since

N∏
k=1

cos
z

2k
=

sin z

2N

[
sin

z

2N

]−1
→ sin z

z
as N →∞.

Chapter 5 Q9:

N∏
k=0

(1 + z2
k

)(1− z) = (1 + z2
N+1

)→ 1 as N →∞.

Extra question: Consider the contour suggested. Choose the log using Principle branch and use

Residue theorem, we obtain

1

2πi

˛
γ

za−1

1 + z
dz = eiπ(a−1).

On γ1,

ˆ
γ1

za−1

1 + z
dz =

ˆ R

ε

e(a−1) log(t+iδ)

1 + t+ iδ
dt→

ˆ R

ε

ta−1

1 + t
dt as δ → 0.

Similarly,

ˆ
γ3

za−1

1 + z
dz =

ˆ R

ε

e(a−1) log(t−iδ)

1 + t− iδ
dt

=

ˆ R

ε

e(a−1) log (t+iδ)

1 + t+ iδ
dt

= e(a−1)2πi
ˆ R

ε

e(a−1)log(t+iδ)

1 + t+ iδ
dt→ e(a−1)2iπ

ˆ R

ε

ta−1

1 + t
dt as δ → 0.

Therefore,

ˆ
γ1−γ3

za−1

1 + z
dz =

(ˆ R

ε

ta−1

1 + t
dt

)
(1− e(a−1)2π)

while when R→∞ and ε→ 0,∣∣∣∣ˆ
γ2

za−1

1 + z
dz

∣∣∣∣ ≤ CR ·Ra−1 · 1

1 +R
→ 0

and ∣∣∣∣ˆ
γ2

za−1

1 + z
dz

∣∣∣∣ ≤ Cε · εa−1 · 1

1− ε
→ 0.

Hence, ˆ ∞
0

ta−1

1 + t
dt =

2πieiπ(a−1)

(1− e(a−1)2πi)
=

π

sin(πa)
.
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